o
o
T Open 1ssues in programming
. Bitcoin contracts
(Oral Communication)
[)

R Ob ertO Zunino Joint work with: 0

Massimo Bartoletti (Univ of Cagliari)

Stefano Lande (Univ of Cagliari)

University of Trento Maurizio Murgia (Univ. of Trento) ¢

DLT2020, 4 February 2020 o ¥

Tnit

certifies that all players have placed their bets (and deposits)

Win(m,a) withe#7C a
certifies that o has won all the rounds until =
(included)
Timeoutl {b)
in: Timeoutl(w, b, a)
in-script: sigK(T",,w““.m,w)(-)
Timeout2 ()
in: Timeout2(m, a, b)
in-script: sigK(Tmm,w'ﬁ_ﬂ_,y)(o)
Turn2fst (b, 8., 3)
in: Turn2(m, a, b)
in-script: 8., 31, SigK (rumz,x,0) (@)
Turn2snd (b, 8., 81)
in: Turn2(m, b, a)
in-script: 35, 3., Si8k (1umz 7, 0) ()
out-script(T,o): verk(win,,«)(T,0)

V Verg(winto,m,q) (T,)
value: (1+d)2L~1"1B

in[p]: Bet,,
in-script(p]: sig (per,)(®)

V/}E'P:{

out-script[p|(T, &): verk(mit,,)(T,0)
value[p]: 1+ dB

‘V//E‘/’:{

contains the bet (and deposit) of at the first round

in: Init[a]
in-script: sigK”,”L‘,)(o)
out-script(T, o):
value: 1+ dB

Verk (win,a,q)(T,0)

Win(a, a) (Teaf) ‘

Win(e, a)
certifies that a has won the lottery
[(Variants as for Win(r, a)) |

out-script[a](T, 0): verk, (cotiect)(T,0)
value[a]: N + dB

(root)

Vp # a { out-script[p](T,0): verk (coueet)(T,0)

value[p]: dBB
BitML
compiler

init {A
B

113, secret a
113, secret b}

(reveal a.
(reveal b. if(a +0)%2 =0
then withdraw A
else withdraw B
+after2 -t : withdraw A)
+aftert : withdraw B3)

A fair lottery in Bitcoin

(transactions)

CollectOrphanWin (m, a) withe #7C «

certifies that o was prevented by an adversary to participate in the rounds

after m, but she can collect her winnings so far (see Theorem 5 for details)

in: Win(r, a)
in-script: Sigy (winr0,x,4)(®)

out-script[a](T, 0): verg, (couect)(T,0)
value[a]: 2L=I=l 4 g8

Vp witha#pCm: { value[p]: dB3
lockTime: 71 + (L — |7|)TRound + TLedger

out-script[p|(T,0): verk, (cottect)(T,)

Turn1(m,a, D)

certifies that o and b are playing in match m,

with 7 C a, b

where it is a’s turn to reveal her secret

Turn2(m, a,b) witha C a,b

certifies that o and b are playing in match m, where a

has revealed her secret, and now it is b’s turn

in[0]: Win (70, a)
in-script(0]: sigxc(win,n0,)(%)
in[1]: Win(x1, b)
in-script[1]: sigg(win.x1.0)(®)

out-script(T, 5,,0):
(H(8.) = h] A verk(rurnt,x,a,b)(T,0))
V Verk(tumi110,x,a,0)(T,0)

value: (1+d)2F-17I3

Secret (,)

in: Turnl(m, a, b)
in-script: 3., Sigw(murmi a0 (®)

out-script(T, 5., §;,0):
(H(3.)=hT A H(3,) = hT
A VETK(Turm2,m,winner(a,b,30,3,)) (T))
V Verk(Turmn270,m,a,5)(T,)
value: (1+d) 2517113

TimeoutI(m, a,b) withw C a,b
certifies that o lost against b in match 7 because

she did not reveal her secret in time

Timeout2(m, a, b)

certifies that b lost against a in match 7 because

with 7 C a, b

she did not reveal her secret in time

in: Turn1(m, a, b)
in-script: L, Sigk(qurnir0.m.0.)(®)

in: Turn2(m, a, b)
in-script: L, L, Sigx(7umzr0,r,0,0)(®)

out-script(T, o): Verx(rimeouts x,a,0)(T,0)
value: (1+d)2F-17I3

lockTime: 7, + (L — |7| = 1)TRound + 2TLedger

out-script(T, o): Verk(rimeout2,x,0,)(T,0)
value: (1 +d) 251713
lockTime: 71 + (L — || — 1)TRound + 4TLedger

Transition system semantics
Computational soundness
Toolchain (development & verification)

BitML implementation (oversimplification)

Stipulation

e Generate BitML transition system
e One Bitcoin transaction per state
e Redeem scripts check BitML transition semantics

e Everyone signs everything

BitML implementation (oversimplification)

Y

Execution

e Put enabled transactions on the blockchain

e This forms an execution trace

Work 1n progress

Recursion

BitML recursion

BitML recursion

N\

Y

e Currently NOT available in BitML
e In BitML state 2 is the same as state 5

e In Bitcoin, 5 is a different transaction from 2

Flavours of Recursion

Consensual recursion
All participants must agree to recurse at
execution-time
Compilation to Bitcoin still possible

Non-consensual recursion
After stipulation, participants can not prevent it
Requires some extensions of Bitcoin

Work 1n progress

"Layer 2" BitML

0]

BitML as is

O

Tx fees paid at each step

10

Off-chain "long jumps”

/

Executing BitML off-chain?

e Optimize for cooperating agents
e Protect from malicious ones

e Off-chain "long jump” signatures save fees 11

Layer 2 BitML Guarantees

As secure as regular BitML
Smaller fees in the cooperating case

Same fees in the adversarial case

Rollback freedom

Last signed "long jump" wins

12

Thank you

